یا می دانید ارشمیدس چه چیزی را یافت ؟
ارشمیدس، ریاضیدان یونانی، در سده ی سوم پیش از میلاد در سیراکوز زندگی می کرد. شهرت او به سبب ابداعاتی همچون اختراع اهرم، اختراع «پیچ ارشمیدس» ( که هنوز هم در مصر برای آبیاری مزارع از آن به هنگام بالا کشیدن آب نیل استفاده می شود)، و نیز کشف قانون هیدروستاتیک است، که گاه «اصل ارشمیدس» نامیده می شود.
چه بود که او را این قدر به هیجان آورد که فراموش کرد قبل از دویدن به سوی خانه لباسهایش را بر تن کند؟
هیرو، پادشاه سیراکوز، از دوستان نزدیک یا شاید از خویشاوندان ارشمیدس، زرگری را مأمور کرده بود تا برایش تاجی از طلای خالص بسازد. وقتی تاج تکمیل شد و به دست پادشاه رسید، تردید داشت که زرگر تمام طلا را به کاربرده باشد. آیا امکان نداشت که زرگر به جای قسمتی از طلایی که به او داده شده بود، از فلز کم ارزش تری مثل نقره یا مس استفاده کرده، و بقیه ی طلایی را که مصرف نشده بود برای خود نگه داشته باشد؟
هر کس می دانست که چگونه طلا را با نقره و مس مخلوط کرده و در این مخلوطها، یا آلیاژها، حتی وقتی مقادیر زیادی از فلزات دیگر استفاده شود، باز هم رنگ خیره کننده ی طلا باقی می ماند. طلای خالص را طلای 24 عیار می نامند. طلای 14 عیار از 58% طلا و 42% فلزهای دیگر تشکیل شده است. این آلیاژ به فراوانی در جواهرات استفاده می شود، و ظاهر آن با طلای خالص تقریباً هیچ فرقی ندارد.
شاه هیرو، دوست خود ارشمیدس را احضار کرد و از این ریاضیدان مشهور خواست تا بفهمد آیا واقعاً تاج از طلای خالص است و تمام فلز با ارزشی که پادشاه به زرگر داده در آن به کار رفته است یا نه. در سده ی سوم پیش از میلاد، شیمی تحلیلی به اندازه ی ریاضیات پیشرفته نبود و ارشمیدس در ریاضیات و مهندسی توانایی بسیار داشت.
ارشمیدس قبلاً برای محاسبه ی حجم جامدهایی که شکلی منظم مثل کره یا استوانه داشتند دستورهای ریاضی ابداع کرده بود. او می دانست که اگر بتواند حجم تاج هیرو را تعیین کند، خواهد فهمید که آیا تاج از طلای خالص درست شده است یا از مخلوطی از طلا با فلزات دیگر.
وقتی پا به خزینه گذاشت و دید که آب از آن سر ریز کرد، متوجه شد که حجم آبی که بیرون ریخته است دقیقاً با حجم قسمتی از بدن او که وارد آب شده برابری می کند. اکنون می دانست که چگونه باید حجم هر جسم جامد نامنظمی را محاسبه کند، چه پای خودش باشد و چه تاج پادشاه. اگر او تاج را در ظرفی پر از آب قرار می داد، می توانست حجم آبی را که سرریز می کرد اندازه گیری کند، و این مقدار با حجم تاج برابر بود.
فرض کنید هیرو به زرگر، مکعبی از طلای خالص داده بود که دقیقاً 2 کیلوگرم وزن داشت. ابعاد چنین مکعبی 7/4 سانتیمتر، و حجم مکعب 104 سانتیمتر مکعب می شد. اگر زرگر تاج را با تمام این طلا درست کرده بود و از هیچ فلز دیگری استفاده نکرده بود، وزن تاج 2 کیلوگرم می شد، گرچه شکل آن با مکعب اولیه فرق می کرد، اما حجم آن همان 104 سانتیمتر مکعب باقی می ماند. ولی اگر زرگر فقط از نصف طلا استفاده و یک کیلوگرم باقیمانده را با وزنی برابر مثلاً نقره جایگزین کرده بود، وزن آلیاژ به کار رفته در تاج همان 2 کیلوگرم می شد، اما حجم آن تفاوت می کرد.
اگر می شد به نحوی حجم تاج را محاسبه کرد، معلوم می شد که بیشتر از 104 سانتیمتر مکعب وزن دارد، چون چگالی نقره فقط در حدود نصف چگالی طلاست. چگالی هر ماده عبارت است از وزن واحد حجم آن. چگالی طلا بیش از چگالی دیگر فلزات رایج است؛ چگالی آن 3/19 گرم بر سانتیمتر مکعب، چگالی نقره 5/10 گرم بر سانتیمتر مکعب، و چگالی مس از آن هم کمتر، یعنی 9/8 گرم بر سانتیمتر مکعب است. حجم یک تاج 2 کیلوگرمی که از 50% طلا و 50% نقره درست شده باشد، 147 سانتیمتر مکعب خواهد بود.
وقتی ارشمیدس این کشف تصادفی را در حمام انجام داد ، دیگر اندازه گیری حجم تاج نو هیرو دشوار نبود. کافی بود آن را در آب بگذارد و حجم آب جا به جا شده را اندازه گیری کند.
هر کس می دانست که چگونه طلا را با نقره و مس مخلوط کرده و در این مخلوطها، یا آلیاژها، حتی وقتی مقادیر زیادی از فلزات دیگر استفاده شود، باز هم رنگ خیره کننده ی طلا باقی می ماند. طلای خالص را طلای 24 عیار می نامند. طلای 14 عیار از 58% طلا و 42% فلزهای دیگر تشکیل شده است. این آلیاژ به فراوانی در جواهرات استفاده می شود، و ظاهر آن با طلای خالص تقریباً هیچ فرقی ندارد.
شاه هیرو، دوست خود ارشمیدس را احضار کرد و از این ریاضیدان مشهور خواست تا بفهمد آیا واقعاً تاج از طلای خالص است و تمام فلز با ارزشی که پادشاه به زرگر داده در آن به کار رفته است یا نه. در سده ی سوم پیش از میلاد، شیمی تحلیلی به اندازه ی ریاضیات پیشرفته نبود و ارشمیدس در ریاضیات و مهندسی توانایی بسیار داشت.
ارشمیدس قبلاً برای محاسبه ی حجم جامدهایی که شکلی منظم مثل کره یا استوانه داشتند دستورهای ریاضی ابداع کرده بود. او می دانست که اگر بتواند حجم تاج هیرو را تعیین کند، خواهد فهمید که آیا تاج از طلای خالص درست شده است یا از مخلوطی از طلا با فلزات دیگر.
وقتی پا به خزینه گذاشت و دید که آب از آن سر ریز کرد، متوجه شد که حجم آبی که بیرون ریخته است دقیقاً با حجم قسمتی از بدن او که وارد آب شده برابری می کند. اکنون می دانست که چگونه باید حجم هر جسم جامد نامنظمی را محاسبه کند، چه پای خودش باشد و چه تاج پادشاه. اگر او تاج را در ظرفی پر از آب قرار می داد، می توانست حجم آبی را که سرریز می کرد اندازه گیری کند، و این مقدار با حجم تاج برابر بود.
فرض کنید هیرو به زرگر، مکعبی از طلای خالص داده بود که دقیقاً 2 کیلوگرم وزن داشت. ابعاد چنین مکعبی 7/4 سانتیمتر، و حجم مکعب 104 سانتیمتر مکعب می شد. اگر زرگر تاج را با تمام این طلا درست کرده بود و از هیچ فلز دیگری استفاده نکرده بود، وزن تاج 2 کیلوگرم می شد، گرچه شکل آن با مکعب اولیه فرق می کرد، اما حجم آن همان 104 سانتیمتر مکعب باقی می ماند. ولی اگر زرگر فقط از نصف طلا استفاده و یک کیلوگرم باقیمانده را با وزنی برابر مثلاً نقره جایگزین کرده بود، وزن آلیاژ به کار رفته در تاج همان 2 کیلوگرم می شد، اما حجم آن تفاوت می کرد.
اگر می شد به نحوی حجم تاج را محاسبه کرد، معلوم می شد که بیشتر از 104 سانتیمتر مکعب وزن دارد، چون چگالی نقره فقط در حدود نصف چگالی طلاست. چگالی هر ماده عبارت است از وزن واحد حجم آن. چگالی طلا بیش از چگالی دیگر فلزات رایج است؛ چگالی آن 3/19 گرم بر سانتیمتر مکعب، چگالی نقره 5/10 گرم بر سانتیمتر مکعب، و چگالی مس از آن هم کمتر، یعنی 9/8 گرم بر سانتیمتر مکعب است. حجم یک تاج 2 کیلوگرمی که از 50% طلا و 50% نقره درست شده باشد، 147 سانتیمتر مکعب خواهد بود.
وقتی ارشمیدس این کشف تصادفی را در حمام انجام داد ، دیگر اندازه گیری حجم تاج نو هیرو دشوار نبود. کافی بود آن را در آب بگذارد و حجم آب جا به جا شده را اندازه گیری کند.
آقا قوچانیان این شکلی نیست
اقا چرا توی هیچ کدام javascript:void(0);از صفحه ها از دکتر حسابی ننوشتینjavascript:void(0);